Current Transducer RA 2000-S/SP1

 I_{PDC} < 3000 A

For the measurement of alternating components in a determined bandwidth, contained in a continuous primary current up to 3000 A.

Electrical data

	Standard		EN 50155 (01.11.95)	
m	Mass		5.5	kg
Τ́s	Ambient storage temperature		- 40 + 85	°C
T _A	Ambient operating temperature		- 25 + 70	°C
Ge	eneral data			
I _T	R.m.s. test current		< 50	mA
R _T	Resistance of test circuit @ $T_A = 70^{\circ}C$, (± 5 %)		135	Ω
N _T	Number of turns		1920	
L _T	Test circuit inductance (± 10 %)		9	mН
Те	est circuit			
f	Frequency bandwidth		20 3000	Hz
Ac	ccuracy - Dynamic performance data			
R _s	Resistance of secondary circuit @ $T_A = 70^{\circ}$ C, (±	5 %)	135	Ω
N _s	Number of turns		1920	
Ls	Secondary circuit inductance (± 10 %)		9	тH
V _d	R.m.s. voltage for AC isolation test ¹), 50 Hz, 1 m	in	12 ¹⁾ 500 ²⁾	kV
	$\mathbf{V}_{\rm m} = 27.657 \cdot 10^{-6} \ 3000 \ {\rm x} \ 50 = 4.140$	0 V 0	@ 3000 Hz	2, 50 A
• OUT	Examples : $V_m = 27.657 \cdot 10^{-6} 50 \times 50 = 0.068$	9 V	@ 50 Hz	^A , 50 A
v	Output voltage (measure sinosoidal sign)	/ =	27 657 · 10 ⁻⁶	<u>Vs</u> fî
V _{OUT}	Output voltage (instantaneous)	/ _m =	- 4.4018 · 10	∂ <u>Vs</u> di A dt
L	Continuous primary current		< 3000	A

Feature

 Insulated plastic case recognized according to UL 94-V0

Advantages

- No insertion losses
- Current overload capability.

Application

• Railway security system.

<u>Notes</u>: ¹⁾ Between primary and secondary + test winding ²⁾ Between secondary and test winding.

Accuracy

20 Hz .. 100 Hz 10 Hz .. 3000 Hz Frequency Amplitude Amplitude error % Phase error in ° Amplitude error % Phase error in ° 0.1 .. 1 A ± 2.8 - 90 ± 5 ± 2.7 - 90 ± 2.5 1 .. 10 A ± 2.5 - 90 ± 5 - 90 ± 2.5 ± 2.6 10..20 A ± 2.9 -90 ± 5 ± 3.0 -90 ± 2.5

Accuracy for the measurement of a single frequency signal : Amplitude error : in % of the measured signal.

Table 1.1 - Maximum amplitude and phase errors for single frequency signals.

Accuracy for the measurement of signal added to a DC current of > 10A

Amplitude error : in % of the measured signal.

Frequency	20 Hz 100 Hz		10 Hz 3000 Hz		
Amplitude	Amplitude error %	Phase error in °	Amplitude error %	Phase error in °	
0.1 1 A	± 2.8	- 90 ± 5	± 2.7	- 90 ± 2.5	
1 10 A	± 2.5	- 90 ± 5	± 2.6	- 90 ± 2.5	
10 20 A	± 2.9	- 90 ± 5	± 3.0	- 90 ± 2.5	

Table 1.2 - Maximum amplitude and phase errors for signals added to a minimum DC fundamental. The values are the same as without DC (see 1.1).

Accuracy for the measurement of signal added to a AC (fundamental) current in the range between 15Hz and 100Hz of >10 A rms

Amplitude error : in % of the measured signal.

Frequency	20 Hz 100 Hz		10 Hz 3000 Hz		
Amplitude	Amplitude error %	Phase error in °	Amplitude error %	Phase error in °	
0.1 1 A	± 2.8	- 90 ± 5	± 2.7	- 90 ± 2.5	
1 10 A	± 2.5	- 90 ± 5	± 2.6	- 90 ± 2.5	
10 20 A	± 2.9	- 90 ± 5	± 3.0	- 90 ± 2.5	

Table 1.3 - Maximum amplitude and phase errors for signals added to a minimum AC fundamental.

<u>LEM</u>

Influence of external magnetic fields

Table 2-1 shows the error in the measurement of the primary current (mA_{ms}) due to external magnetic fields at the frequency of the external field. The errors are measured with respect to the theorically expected signal. The influence is different for the 3 axes of the transducer. See Fig. 2-1 for the orientation of the axes.

At 50Hz :

Position	X	Y	Z
Frequency	mAT/A/m	mAT/A/m	mAT/A/m
H _{AC} 50Hz	5	18.2	1.54
H _{AC} 300Hz	17.6	49.2	1.96

Table 2.1 - Influence of external magnetic fields in each axes of the transducer.

Dimensions RA 2000-S/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 1 mm

4 slots \oslash 10.5 mm • Transducer fastening

Ø 102 mm

- 4 M10 steelscrews Recommended fastening torque 11.5 Nm or 8.48 Lb.-Ft.
- Primary through-hole
- Connection of secondary
- screened cable 5 x 0.5 mm² • Connection of screen M5 threaded stud
- Recommended fastening torque 2.2 Nm or 1.62 Lb. Ft.

Remarks

- V_s is positive when di_p/dt flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.